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Abstract

Genome-wide association studies (GWAS) of cerebrospinal fluid (CSF) Alzheimer’s Disease (AD) biomarker levels have identified novel
genes implicated in disease risk, onset and progression. However, lumbar punctures have limited availability and may be perceived as
invasive. Blood collection is readily available and well accepted, but it is not clear whether plasma biomarkers will be informative for
genetic studies. Here we perform genetic analyses on concentrations of plasma amyloid-β peptides Aβ40 (n = 1,467) and Aβ42 (n = 1,484),
Aβ42/40 (n = 1467) total tau (n = 504), tau phosphorylated (p-tau181; n = 1079) and neurofilament light (NfL; n = 2,058). GWAS and gene-
based analysis was used to identify single variant and genes associated with plasma levels. Finally, polygenic risk score and summary
statistics were used to investigate overlapping genetic architecture between plasma biomarkers, CSF biomarkers and AD risk. We found
a total of six genome-wide significant signals. APOE was associated with plasma Aβ42, Aβ42/40, tau, p-tau181 and NfL. We proposed 10
candidate functional genes on the basis of 12 single nucleotide polymorphism-biomarker pairs and brain differential gene expression
analysis. We found a significant genetic overlap between CSF and plasma biomarkers. We also demonstrate that it is possible to improve
the specificity and sensitivity of these biomarkers, when genetic variants regulating protein levels are included in the model. This
current study using plasma biomarker levels as quantitative traits can be critical to identification of novel genes that impact AD and
more accurate interpretation of plasma biomarker levels.

Introduction
As the field of Alzheimer’s Disease (AD) genome-wide association
studies (GWAS) advances, a seemingly ever-increasing number
of loci have been identified. Most recently 75 loci were reported
by Bellenguez et al. (1) in a large GWAS analyses (n = 788,989).
Although increasing sample size and newer tools for analysis
have greatly improved our ability to identify common and rare
variants associated with AD, there is still much work to be done
in understanding the biological consequences of these genetic
underpinnings. One way of addressing this knowledge gap in
GWAS analyses is to use AD-associated fluid biomarkers as a
proxy for case-control status (2,3), which can offer increased
statistical power (2–4) as well as insights into how disease affects
the various tissues for measuring biomarker levels.

Previous analyses have identified multiple loci associated
with risk, onset or progression by using with concentrations
of Aβ42, tau, p-tau181, clusterin (CLU), apolipoprotein E (APOE)
and soluble TREM2 (sTREM2) (4–12). Our group also leveraged
these endophenotypes, disease associated biomarkers with a
demonstrated connection to genetics, to understand pathologic
events. We used cerebrospinal fluid (CSF) p-tau181 and Aβ

concentrations to demonstrate that APOE also affects tau
pathology independently of AD (2) that was further validated
using animal models (13). Some notable findings were that CSF

sTREM2 levels are associated with AD and that CSF sTREM2 levels
correlate with CSF tau and p-tau181, but not Aβ42, suggesting a
post amyloid accumulation relationship between CSF sTREM2
and AD (14). In addition, Mendelian Randomization analyses
demonstrated that TREM2 affects AD risk in most individuals, not
just in carriers of TREM2 variants, and that higher TREM2 levels
are protective. Additional genetic analysis of CSF TREM2 levels
also found that the MS4A gene cluster modulates CSF sTREM2
and implicates TREM2 as having a key biological role in sporadic
late-onset AD.

Recently, additional studies have investigated if plasma
biomarkers are also informative endophenotypes for genetic
studies as in the case of the CSF biomarkers. Damotte et al.
(15), performed meta-analyses on over 12,000 non-demented
individuals to find variants associated with Aβ40, Aβ42 and
Aβ42/40 ratio. Their analysis found variants in the BACE1, APP,
PSEN2 and APOE loci to be associated with plasma Aβ levels,
suggesting that plasma Aβ levels are a potential endophenotype
for AD. Additionally, a recent study by Sarnowski et al. (16)
(n = 14,721) identified 14 novel loci and 10 genes, which had been
previously associated with neurological diseases, associated with
circulating total tau. Specifically, they find strong associations
with the MAPT locus for Europeans, suggesting that variants
in the MAPT locus are the primary risk factor in tau-mediated
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Table 1. Summary of demographics for each analyte per cohort

N ADNI Knight-ADRC HCP Age Range % female % APOE4 + % controls

Aβ40 1964 683 1121 157 71.55 ± 9.46 37–91 50.00% 42.92% 57.35%
Aβ42 1985 704 1121 157 71.56 ± 9.43 37–91 50.05% 43.04% 57.05%
Aβ42/40 1991 704 1124 160 71.59 ± 9.45 37–91 50.13% 43.04% 57.05%
NfL 2380 1577 803 0 72.28 ± 8.08 37–91 45.75% 44.08% 45.21%
tau 563 563 0 0 75.41 ± 6.79 55–91 41.92% 48.49% 32.68%
p-tau181 1186 1186 0 0 73.25 ± 7.07 55–91 45.70% 43.68% 36.26%
Cases 1457 1166 291 NA 73.78 ± 7.58 50–91 42.76% 56.49% NA
Controls 1355 525 830 NA 69.94 ± 9.11 37–91 53.73% 32.77% NA
Total 3010 1695 1162 157 72.03 ± 8.79 37–91 47.77% 43.32% 44.95%

This project uses plasma Aβ40, Aβ42, NfL, tau and p-tau181 from 1162 unique Knight-ADRC subjects, 1695 unique ADNI subjects and 157 unique HCP subjects.
Demographics, which include number of subjects who has data for each analyte (N), Age, Age range, % female subjects, % of subjects with APOE ε4 and % of
controls in data set are shown here.

neurodegeneration in that ethnic group. Finally, A separate study
of p-tau181 levels (11) (n = 714) identified novel relationships
between p-tau181 and APOE risk allele rs769449. These findings
demonstrate the power of using AD endophenotypes to address
unanswered questions about the underlying biology of AD. These
studies were performed in a large dataset but with previous
generations of Aβ and tau assays and not the newer assays
generation that provide higher sensitivity and perform better
to predict AD risk. Recent studies have found that recent liquid
chromatography/mass-spectrometry-based (LC–MS) methods of
measuring Aβ, such as the methods used by Kirmess et al. have
shown an ability to associate status with a decrease in Aβ42
and Aβ42/40 ratio with a similar accuracy to CSF biomarkers,
as well as they have better concordance with amyloid positron
emission tomography (PET) compared with immunoassays (17).
In this study, we will focus on plasma AD biomarkers generated
using the new generation of assays.

Although CSF endophenotypes have been demonstrated to
be a powerful analysis tool, they are more difficult to obtain
because of invasiveness and costs of the procedure; thus, opening
a need for accessible, less invasive assays like plasma biomark-
ers. Recently, sensitive and precise LC–MS methods for measur-
ing plasma Aβ42/Aβ40 (Aβ1–40/Aβ1–42) have opened the door for
novel studies and clinical application of AD plasma biomark-
ers (18–20). Additional immunoassays such as SiMoA have been
adapted for increased detection of other AD plasma biomarkers
(19): including tau, p-tau181 and neurofilament light (NfL). These
biomarkers’ epidemiological relevance to AD makes analyses of
them especially useful to understanding how genetic markers
are contributing to AD outcomes. Biomarkers such as tau and
NfL could be especially useful in this case, as they are relevant
to the etiology of several neurological diseases such as frontal-
temporal dementia (18) and multiple sclerosis (20), respectively.
There are many overlapping features of neurodegenerative dis-
eases. Identifying overlapping genetic markers can improve our
ability to understand the causal genes and functional pathways
implicated disease, or, importantly, allow for the identification of
new drug targets. These six biomarkers are additionally important
as they have shown power to differentiate AD cases and controls
with more consistency than some other AD biomarkers (21). This
study aims to identify genetic variants associated with AD plasma
concentrations of Aβ40, Aβ42, Aβ42/40, NfL, tau, and p-tau181;
as well as use this relationship to gain a better understanding of
how genetics influence the relationship between AD and these
plasma biomarkers. Additionally, we hypothesize that it may be
possible to improve the accuracy of these plasma biomarkers by
incorporating genetic information on the association model, as in
our previous study for YKL40 levels in CSF (7).

Results
Study design
We performed GWAS of six plasma biomarkers plasma (Aβ40,
Aβ42, Aβ42/40, NfL, tau and p-tau181) measured in the
Alzheimer’s Disease Neuroimaging initiative (ADNI), the Knight-
ADRC and the Human Connectome Project (HCP) cohorts.
Analyses were performed using plasma concentrations of Aβ40
(n = 1,964), Aβ42 (n = 1,985), total tau (n = 563), p-tau181 (n = 1,186)
and NfL (n = 2,380) in unrelated individuals of European ancestry.
Within ADNI, individuals had an average age of 74, with the total
population ranging from 55 to 91. Knight-ADRC participants were
69 years old on average, ranging between 37 and 91. Finally, HCP
participants were 74 years old on average ranging between 51 and
90 years old, for a total population average of 72 (37–91). Across the
three datasets, subjects were, on average, 47.77% female, 43.32%
APOE ε4 + and 43.32% controls. The full population demographics
are summarized in Table 1 and Supplementary Material, Table S1.
Plasma biomarker levels were measured with either C2N LC–MS-
based methods (Aβ40, Aβ42 and NfL), Luminex immunoassay-
based methods, (Aβ40, and Aβ42) or SiMoA immunoassay-based
methods (tau, p-tau181, NfL). More information about each cohort
and quality control (QC) steps applied are available in the methods
section and in Figure 1, Table 1, and Supplementary Material,
Table S1.

We performed the following steps for this study (Fig. 1): (i)
Baseline plasma biomarker levels were normalized in each cohort
separately by log10 transformation and calculating a z-score. Out-
liers, defined as z-score values greater than three standard devia-
tions above or z-score values less than three standard deviations
below the mean, were removed (Supplementary Material, Figs S1–
S3). (ii) The data were cleaned by excluding individuals without
genotype data, excluding related and duplicated individuals, and
excluding individuals not of European ancestry (Supplementary
Material, Figs S4 and S5). (iii) Linear regression analyses were run
using Plink v2.0 using an additive model of single nucleotide poly-
morphism (SNP) dosages with covariates age, sex, CohortArray
and the first 10 principal components. (iv) Post-GWAS analyses
included comparisons across CSF biomarker and AD risk pheno-
types, annotation, gene based and fine mapping and using plasma
biomarker levels corrected by its top hit to determine that variants
genetic contribution to AD.

Single variant analysis
Single variant analysis (SVA) of our five biomarkers identified six
loci passing the genome-wide significance threshold (5 × 10−08)
and eight SNP-biomarker pairs (Table 2). Forest plots (Supple-
mentary Material, Figs S7–S19) showed consistent direction
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Figure 1. Study Design. The project follows the figure above top-to-bottom, left-to-right order. We normalize phenotype by log10, z-score transformation,
subset baseline records and harmonize the three cohort tables. Next, we perform subject-level QC by removing individuals with no plasma or GWAS
data, are related/duplicates, and are not of European ancestry. We perform single variant analysis using Plink v2.0. Finally, we perform post-GWAS
analyses including functional annotation, gene-set analysis, modified prediction models and overlap with other phenotypes.

of effect for the sentinel SNPs across datasets. The APOE ε4
risk variant rs429358 minor allele frequency (MAF = 22.4%) was
the most strongly associated signal for Aβ42 (P = 2.84 × 10−08),
Aβ42/40 (P = 6.26 × 10−18), p-tau181 (P = 3.91 × 10−22) and NfL
(P = 7.63 × 10−10; Fig. 2 and supplementary figures).

There were three additional loci associated with plasma NFL
and all of them were rare variants (MAF < 0.01; rs76576243,
rs62476358 and rs149377334, Table 2 and Fig. 2E, Supplementary
Material, Figs S15–17). rs76576243 (P = 2.09 × 10−08; MAF = 0.7%)
on chromosome 20 is an intergenic variant ∼290 kb away from
SULF2 and 420 kb away from NCOA3. We performed functional
annotation, and we did not find any coding variant, eQTL
or pQTL in this locus. The next most significant hit for NfL,

rs62476358 (P = 2.91 × 10−08, MAF = 0.3%) on chromosome 7, is
an intronic variant of the gene PTPRN2 which is the only gene
in the region. Lastly, rs149377334 (P = 3.24 × 10−08, MAF = 0.5%),
another intergenic variant on chromosome 8, is 79 kb away from
its nearest gene UNC5D. No other genes are within the 500 kb
flanks of the variant.

Two additional significant loci were associated with tau levels
(Table 2 and Fig. 2C, Supplementary Material, Figs S9 and S10):
rs1795325153 and rs7790638 both of which are also rare variants.
Rs1795325153 (P = 1.05 × 10−08; MAF = 0.4%), is an intergenic
variant near the CHRM2 gene, whereas rs7790638 (P = 4.41 × 10−08;
MAF = 0.6%) is an intronic variant of UMAD1. Functional
annotation (coding variants, and eQTL and pQTL) did not find
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Table 2. Summary of top hits and overlap with CSF p-tau181, tau and AD risk

Biomarker rsID Nearest Gene MAF BETA Plasma_P CSF Aβ42_P CSF p-tau181_P AD_Risk_P

Aβ40 rs113183385 RP11-292B1.2 0.025 −0.599 5.65 × 10−08 0.788 0.033 6.88 × 10−01

Tau rs7790638 UMAD1 0.006 −2.776 4.41 × 10−08 NA NA 6.35 × 10−01

p-tau181 rs554323670 ETV1 0.009 −1.159 8.26 × 10−08 0.806 0.534 1.63 × 10−01

Tau rs1795325153 CHRM2 0.004 −2.823 1.05 × 10−08 NA NA NA
NfL rs62476358 PTPRN2 0.003 1.122 2.91 × 10−08 0.284 0.457 8.86 × 10−01

NfL rs149377334 UNC5D 0.005 0.93 3.24 × 10−08 0.249 0.605 4.47 × 10−01

p-tau181 rs189447682 KCNB2 0.004 −1.328 8.02 × 10−08 0.947 0.376 2.95 × 10−01

NfL rs10809277 PTPRD 0.46 0.132 8.37 × 10−08 0.124 0.943 4.53 × 10−01

Aβ42 rs6857 APOE 0.251 −0.211 2.84 × 10−08 6.29 × 10−143 0.028 4.00 × 10−123

NfL rs429358 APOE 0.224 0.184 7.63 × 10−10 4.09 × 10−299 2.93 × 10−77 <10−300

Aβ42/40 ratio rs429358 APOE 0.213 −0.363 6.26 × 10−18 4.09 × 10−299 2.93 × 10−77 <10−300

p-tau181 rs56131196 APOE 0.277 0.39 3.97 × 10−22 1.69 × 10−321 9.94 × 10−94 4.00 × 10−123

NfL rs76576243 SULF2 0.007 1.07 2.09 × 10−08 0.551 NA 3.79 × 10−02

Top hits from each plasma analyte were cross referenced with CSF Aβ42, p-tau181 and tau results from previous studies and AD risk results from Bellenguez
et al. to look for associations in common. Only results in APOE region replicate suggesting our dataset may be underpowered. Bolded values represent a
nominally significant P-value (P ≤ 0.05).

Figure 2. Manhattan plots from SVA. Manhattan plots of SVA results for Aβ40 (A), Aβ42 (B), tau (C), p-tau181 (D) and NfL (E). The red line represents the
genome-wide significance threshold of 5 × 10−08 and the blue line represents the suggestive threshold of 1 × 10−05.
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any association in these loci. A search of candidate genes within
the AMP-AD database, Agora, revealed that candidate genes APOE
(chr19 locus for Aβ42, p-tau181, NfL and Aβ42/40), CHRM2 (chr7
locus for tau), ETV1 (chr7 locus for p-tau181), KCNB2 (chr8 locus
for p-tau181), PTPRD (chr9 locus for NfL), PTPRN2 (chr7 locus for
NfL), SULF2 (chr29 locus for NfL), UMAD1 (chr7 locus for tau), and
UNC5D (chr8 locus for NfL) were all differentially expressed in
at least one brain region in AD cases compared with cognitively
normal controls. A summary of these results can be found in the
Supplementary Material, Table S2.

We also identified four loci of interest (LOI) at near genome-
wide significance (P < 1 × 10−07), which requires larger studies for
validation. The rs113183385 SNP (P = 5.65 × 10−08; MAF = 2.5%),
an intergenic variant on chromosome 4 not near any major
genes, was associated with plasma Aβ40 levels (Table 2 and
Fig. 2A and Supplementary Material, Fig. S6). For plasma p-tau181
levels, there were two LOI which are both intergenic variants:
rs189447682 (P = 8.02 × 10−08; MAF = 0.4%) near KCNB2 on chro-
mosome 8 and rs55432670 (P = 8.26 × 10−08; MAF = 0.9%) near
ETV1 on chromosome 7 (Table 2 and Fig. 2D and Supplementary
Material, Fig. S12–S13). For plasma NfL levels, a LOI was observed
at a common intergenic variant, rs10809277 (P = 8.37 × 10−08;
MAF = 46%), ∼400 kb away from PTPRD on chromosome 9 (Table 2
and Fig. 2E and Supplementary Material, S18). All LOI (except
rs10809277) were rare variants (or in gene poor regions in the
case of rs113183385) and no eQTLs were identified in connection
with these variants, or variants in LD (D′ = 1, P ≤ 0.01). None of
these were in any previously reported AD risk loci; however, the
nearest gene for the two p-tau181 loci, KCNB2 and ETV1, and the
NfL locus, PTPRD, have been investigated with respect to AD.

Overlap genetic architecture of plasma
biomarkers with other AD phenotypes
Next, we sought to determine if the variants associated with
plasma AD biomarkers were associated with CSF biomarkers
or AD risk. In comparing plasma and CSF biomarker analyses
(Table 2) we identified two loci in common between the two
tissues. The strongest association for both markers was found at
the APOE locus.

We first compared the statistical power of CSF versus plasma
by looking at the strength of the association of a known region;
APOE, with Aβ and p-tau181. This study of plasma biomarkers has
a lower sample size (Nplasma_Aβ42 = 1,485, Nplasma_ptau181 = 1,078)
than CSF genetics studies (NCSF_ Aβ42 = 13,116, NCSF_ptau181 = 12,553),
making it difficult to compare the power of the two tissues. To
compare the power of plasma GWAS more accurately to CSF,
we can also look at the earlier analysis of CSF Aβ42, tau and p-
tau181 by Cruchaga et al. (2), which included 1,269 individuals. We
compared the P-values of the top hit in the APOE locus (rs769449)
reported in the main text of Cruchaga et al. (2) with P-values from
our analysis of Aβ42 and p-tau181. We used the proxy variant
rs41377151 in place of the APOE2 variant rs769449 as it was
not present in the analysis of Aβ42. The signal in plasma Aβ42
was less significant than that for CSF (2) (Pplasma = 4.85 × 10−07,
PCSF = 9.02 × 10−47). On the other hand, the strength of the
signal in the APOE locus for plasma p-tau181 had a bit more
significant association compared with CSF (Pplasma = 2.15 × 10−19,
PCSF = 2.56 × 10−18). This juxtaposition between Aβ42 and p-
tau181 may suggest that plasma p-tau181 may be a better
endophenotype for genetic studies than Aβ42. Aβ40 and Aβ42
on their own are known to be not as good biomarkers as their
ratio (Aβ42/Aβ40). We found that the association of APOE with

plasma Aβ42/Aβ40 had a more significant association than Aβ42
alone and similar to that of p-tau181 (PAβ42/Aβ40 = 6.23 × 10−18).

Then, we compared the genome-wide signals between CSF and
plasma versus AD risk. We find a similar overlap between plasma
versus risk and CSF versus risk when comparing our results with
the latest AD risk paper by Bellenguez et al. (1), Variants in the
APOE locus have a common association with plasma phenotypes
and AD risk (Table 2). To analyze the overlap between AD risk
with plasma biomarkers, we first combined the summary statis-
tics from Bellenguez et al. 2022 and Kunkle et al. 2019 (21) and
performed LD clumping within a 2 MB window. In Kunkle et al.
there were 57 signals, and 83 in the Bellenguez et al. paper. A total
of 41 of 83 signals from Bellenguez overlap with Kunkle et al. and
42 were novel leading to a total of 99 loci. Out of these 99 SNPs,
we found 23 SNPs across 10 loci that have at least a nominally
significant association with at least one of our plasma phenotypes
(Supplementary Material, Table S3). When comparing plasma
GWAS results to results from Jansen et al. (22) we find that the
SNPs in the chr1 (CR1) locus for CSF Aβ42 also shown a nominal
significance in plasma Aβ40 and Tau. The SNPs in the GMNC and
C16orf195 loci associated with CSF levels also have nominal sig-
nificance in plasma Aβ42 and NfL and Tau, respectively. The APOE
locus from CSF Aβ42 and p-tau181 is also associated with plasma
Aβ40 and Tau and shows a genome-wide significance in plasma
Aβ42, Aβ42/40 ratio, NfL and p-tau181 (Supplementary Material,
Table S4, Table S5). Looking in the other direction, only the APOE
locus from plasma analyses shows a genome-wide significance in
Jansen et al. whereas rs113183385 (P = 0.033) and rs6857 (P = 0.028)
replicate at nominal significance in CSF p-tau181 (Table 2). These
results suggest that plasma biomarkers, in a larger dataset could
identify previously confirmed AD risk loci.

To expand on the genetic overlap between AD risk, CSF
biomarkers and this study, we performed linear regression of
plasma phenotypes as a response variable to AD risk polygenic
risk score (PRS) and CSF PRS with and without APOE. We found
that the AD PRS with APOE to be significantly associated with
Aβ42 (Pwith APOE = 6.08 × 10−05), tau (Pwith APOE = 1.85 × 10−02), p-
tau181 (Pwith APOE = 7.21 × 10−14, NFL (Pwith APOE = 9.79 × 10−04,
and, Aβ42/40 (Pwith APOE = 2.16 × 10−07; Supplementary Material,
Table S6) but not Aβ40 (Supplementary Material, Table S6). On
the other hand, PRS CSF Aβ42 (P = 9.46 × 10−09) and p-tau181
(P = 2.17 × 10−06) were significantly associated with their plasma
counterparts, but not tau (P = 1.52 × 10−01). However, CSF PRS
without APOE was not significantly associated with any plasma
biomarkers, suggesting that there is little genetic overlap between
CSF and plasma beyond APOE. However, analyses by Deming
et al. 2017 (23) only found a handful of loci outside of the APOE
locus, so a small number of SNPs are being used to generate risk
scores when APOE is not included; therefore, the risk scores may
not be reliable. The results using AD risk PRS demonstrate that
AD risk variants are associated with plasma biomarker levels—
specifically levels of plasma Aβ42, Aβ42/40, tau, p-tau181 and NfL.
The weak association ultimately echoes the previous point, that
more statistical power is needed in plasma biomarker datasets to
identify AD risk loci.

Improving biomarker accuracy by including
genetics variant
As several loci associated with plasma biomarkers were not asso-
ciated with AD risk, besides APOE, we hypothesize that by correct-
ing the plasma levels with those loci, the sensitivity and specificity
of these biomarkers could increase. We also hypothesize that if we
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Table 3. Summary of SNP-adjusted ROC

Analyte SNP rsID AUC SNP adjusted AUC Delta AUC P

p-tau181 chr19:44919589 rs56131196 0.636 0.610 −2.60% 7.18 × 10−04

Aβ42 chr19:44888997 rs6857 0.536 0.511 −2.50% 1.11 × 10−08

Tau chr7:7824214 rs7790638 0.570 0.545 −2.50% 4.64 × 10−04

Tau chr7:136835925 rs1795325153 0.570 0.546 −2.40% 3.22 × 10−04

Aβ40 chr4:28949717 rs113183385 0.546 0.529 −1.70% 4.84 × 10−03

Aβ42/40 ratio Chr19:44908684 rs429358 0.600 0.591 −0.90% 3.60 × 10−02

p-tau181 chr8:72434155 rs189447682 0.636 0.641 0.50% 3.05 × 10−01

p-tau181 chr7:14036424 rs554323670 0.636 0.643 0.70% 1.95 × 10−01

NFL chr19:44908684 rs429358 0.618 0.625 0.70% 3.74 × 10−01

NFL chr7:158022052 rs62476358 0.618 0.640 2.20% 2.73 × 10−03

NFL chr8:35156150 rs149377334 0.618 0.640 2.20% 2.83 × 10−03

NFL chr20:48076998 rs76576243 0.618 0.640 2.20% 2.42 × 10−03

NFL chr9:11008173 rs10809277 0.618 0.641 2.30% 2.08 × 10−03

To help determine if significant variants are truly associated with AD, we compare ROC curves of a base model—Status ∼ normalized protein level—versus an
alternative model which uses the studentized residuals of normalized protein levels ∼ SNP in place of the normalized protein level (Status ∼ studentized
residuals). An increased AUC corresponds to genetic noise; whereas, a decreased AUC corresponds to the variant having a true association with AD. P-value
determined by DeLong test for comparing AUC (H0 = difference between AUC is 0).

correct by a known AD-risk variant, like APOE, the sensitivity and
specificity of these biomarkers would decrease.

We were able to validate this hypothesis and establish a base-
line by using APOE locus, which is a known AD locus as a refer-
ence. We corrected the protein levels by including APOE in the
model. When doing this, we found that the difference in the
area under the receiver operating characteristics curve (�AUC),
between the model including only the protein levels and that
correcting by APOE to be −2.6%, −2.5%, −0.90% and 0.7% for p-
tau181, Aβ42, Aβ42/40 and NfL, respectively. This indicates that
the sensitivity and specificity of these proteins, when correct-
ing for APOE, decreases, as we hypothesized. However, we also
hypothesize that if we corrected by variants not associated with
AD risk, the sensitivity and specificity would improve. At the same
time, these analyses suggest that we should only expect to see
very modest changes, lower than 3% in the AUC from testing any
of the variants associated with plasma levels.

When correcting with the variants found in this study,
i.e. rs7790638 (tau), rs1795325153 (tau), rs7790638 (tau) and
rs113183385 (Aβ40), we found that the AUC were significantly
different from the unadjusted model including protein levels
(Fig. 3 and Table 3). The �AUC for both tau-associated variants
were 2.4% and 2.5% (rs7790638 and rs1795325153, respectively)
indicating nearly as strong of an effect on tau as APOE ε4 has
on Aβ40 and p-tau181. Similarly, when the variants associated
with NFL outside of the APOE region (rs76576243, rs62476358,
rs149377334 and rs10809277) were used to correct NFL levels, the
AUC showed a significant increase compared with the default
model (�AUC of 2.2–2.3% and P < 2.83 × 10−03, respectively).

Discussion
We aimed to identify novel loci associated with AD by using
plasma biomarkers as endophenotypes and to aid a better inter-
pretation of plasma biomarker levels. To that end, it is important
to perform these analyses and compare with CSF biomarkers and
AD risk to determine how informative plasma biomarkers are for
genetic analysis. To the former, we detected associations with the
APOE locus across Aβ42, Aβ42/40, tau, p-tau181 and NFL. We were
additionally able to identify several rare variants associated with
those four biomarkers. Fine mapping of these variants identified
one potentially novel gene, KCNB2, although it is not clear if this
variant is truly associated with AD. That said, we believe that

our ability to detect at least APOE suggests that these plasma
biomarkers are informative and that they can identify variants
associated with AD risk. It is important to note; however, that
larger studies and/or are needed to identify additional signals and
validate the rare variants findings from this study.

With respect to the interpretation of plasma biomarkers GWAS,
our comparison to CSF shows that, currently, CSF still provides
clearer and stronger results for some biomarkers like Aβ42. How-
ever, for a similar sample size, we found that plasma p-tau181 had
comparable power as CSF. In combination with the relative ease
of attaining plasma from more individuals, these findings would
suggest plasma to be the better for analysis regarding p-tau181
levels. Additional analyses need to be performed to determine if
this may also be true for other p-tau species.

Additionally, our analysis of overlap with AD risk using the lat-
est GWAS shows that the genetic architecture of plasma biomark-
ers overlaps with that of AD risk. A total of 23 out of 99 sentinel
SNPs identified by Bellenguez et al. and Kunkle et al. were found
to have a nominally significant P-value in association with at
least one plasma biomarker (Supplementary Material, Table S3).
We also found AD risk PRS to be significantly associated with
plasma biomarkers Aβ42, Aβ42/40, p-tau181 and NfL when the
APOE region is included (Supplementary Material, Table S6). These
findings reinforce the conclusion that plasma biomarkers can be
used to detect AD risk associations, but also suggest a mecha-
nism of AD biology driving the original association. For example,
rs679515 in the CR1 locus, identified by Bellenguez et al. with P-
value 1.40 × 10−23 is associated with nominal significance to Aβ40
(4.09 × 10−02) and tau181 (3.25 × 10−02; Supplementary Material,
Table S3). This suggests that the functional gene in that locus is
mainly affecting tau and amyloid biology with respect to AD. The
results from the PRS can be used to build upon this. On the basis
of the correlations between plasma biomarker levels and AD risk
PRS without APOE, it seems that AD risk loci outside of APOE are
primarily associated with and affecting plasma p-tau181 and NfL.
Because the correlation with plasma Aβ42, Aβ42/40 and tau levels
is attenuated when removing the APOE region, the data suggests
that Aβ42, Aβ42/40 and tau have an APOE driven relationship
to AD. That is, AD-associated loci outside of APOE do not seem
to be strongly contributing to plasma Aβ42, Aβ42/40 and tau
levels. Alternatively, we must also consider that we simply do not
have the resolution necessary to detect significant correlations
in Aβ.
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Figure 3. ROC plots from SNP-adjusted prediction models. ROC plots for Aβ40 (A), Aβ42 (B), tau (C), p-tau181 (D) and NfL (E). The default model in each
plot is indicated by a solid black line. Each SNP adjusted model is represented by a dashed line and color, shown in the legend to the right of each plot.
AUCs and P-values are summarized in Table 3.

To add to this, and incorporate the context of other AD lit-
erature, APOE (associated with plasma Aβ42, p-tau181 and NfL)
and UMAD1 (associated with plasma tau on chr7)—candidate
genes identified through fine mapping—have been previously
reported to be associated with AD risk (1). The variant driv-
ing the association in APOE locus is the known APOE ε4 allele
rs429358 (24). Five of the other GWAS loci from this analysis,
CHRM2 (chr7, tau), ETV1/ER81 (chr7, p-tau181), PTPRD (chr9, NfL),
PTPRN2 (chr7, NfL) and SULF2 (chr20, NfL), have also been asso-
ciated with Alzheimer’s disease in at least one study. One study
has investigated links between CHRM2 (chr7, tau) and AD and

found that rs6962027 in CHRM2 and rs7511970 in CHRM3 may
interact to affect AD risk (25). A study by Pastorcic and Das (26)
that investigated ETS transcription factors ER81 (ETV1 chr7, p-
tau181) and Elk1 showed that both regulate transcription of PSEN1
gene promoter. PTPRN2 (chr7, NfL), which was identified on the
basis of whole-genome sequencing of APOE ε4 carriers (27), has
not yet been studied functionally in connection to Alzheimer’s,
but it may function similarly to PTPRD (chr9, NfL), which ‘has likely
roles as a neuronal cell adhesion molecule’ and is associated with
neurofibrillary tangle density (28). With regards to SULF2 (chr20,
NfL), Roberts et al. (29) found that it has decreased expression in
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specific regions of the brain in AD cases compared with controls.
As such, these results also emphasize the need for increased
sample size in plasma biomarker studies with power to detect
more risk loci.

Neither UNC5D (chr8, NfL) nor KCNB2 (chr8, p-tau181), have
been previously associated with AD by any studies. This is com-
bination with our fine mapping suggests that these are novel
associations to plasma NfL and p-tau181 levels, respectively, and
potentially AD. In addition to this, AMP-AD results show that
UNC5D is significantly differentially expressed in five out of nine
brain tissues assayed, whereas KNCB2 is significantly differen-
tially expressed in seven out of nine brain tissues assayed. For four
of the seven tissues (temporal cortex, superior temporal gyrus,
para-hippocampal gyrus and the inferior frontal gyrus) wherein
KCNB2 is significantly differentially expressed, the log2 of the fold
change is less than −0.263 or >0.263, which is meaningful change
by AMP-AD definition (Supplementary Material, Table S2). This
also suggests that p-tau181 levels in cases are affecting expression
changes in KCNB2 or vice versa.

When comparing plasma and CSF biomarkers, we found a
very strong overlap in the APOE locus with our biomarker GWAS
results. In this locus, the most significant SNP from Cruchaga
et al. (2), rs34404554 associated with CSF p-tau181 had a P-value
of 1.33 × 10−16 as compared with P = 2.34 × 10−11 in our analysis
of plasma p-tau181. Outside of the APOE locus, we do not see
an overlap of the CSF genome-wide hits, except for one variant
near GLIS3, associated with CSF p-tau181, which has a nominally
significant P-value (P < 0.05) in our plasma dataset (rs623295,
P = 0.034). We, similarly, only found overlap in the APOE locus
when comparing results of Aβ42 by Cruchaga et al. (6) with our
current analysis, albeit with much lower P-values. We also came
to a similar conclusion comparing our plasma biomarkers to CSF
Aβ42, tau and p-tau181 by Deming et al. PRS (23) and CSF Aβ42 and
p-tau181 summary statistics in the most recent large-scale CSF
biomarker GWAS by Jansen et al. (22). Using CSF biomarker PRS we
only found associations with plasma biomarkers when the APOE
region was included. This indicates that there is relatively low
genetic overlap outside of this locus. However, it should be taken
into consideration that the low number of SNPs outside the APOE
locus at genome-wide significance could mean the results of the
PRS without APOE for CSF biomarkers are unreliable. Additionally,
the lack of genome-wide significant replication outside of the
APOE locus implies a need for larger sample sizes for strong
associations; however, that we find previously identified AD risk
and CSF biomarker loci that replicate at nominal significance
encourages us that this is possible. Taken together, these findings
suggest that plasma p-tau181 could be as informative as CSF p-
tau181 for genetic analyses with a similar sample size. It should be
noted; however, that the analysis by Cruchaga et al. (2) has partial
sample overlap to this analysis so that could explain why there is
similar power for p-tau181.

To compare our results with more recent studies of plasma
p-tau181, we can look to GWAS of plasma p-tau181 levels in
ADNI individuals by Huang et al. (11). Their analysis used a much
smaller sample size (n = 714) and potentially up to 60% sample
overlap with our analysis. Comparing the two, we again con-
firm the APOE locus as being associated with plasma p-tau181
levels, but our study provides larger statistical power: The top
rs4420638 and had a P-value of 6.26 × 10−08, in Huang et al. versus
P = 1.83 × 10−21 in our analysis. This more directly illustrates the
point that increasing sample size can improve our ability to detect
signals in association analyses of plasma p-tau181 levels. It also
highlights the ability of plasma p-tau181 assay to find consistent

results across at least partially independent datasets. It is impor-
tant to note; however, the limitations of plasma p-tau181 to iden-
tify loci outside of the APOE region thus far. Additionally, simply
increasing sample size might not be a sufficient catchall solution
to gaining utility out of plasma biomarkers. These limitations
could be because of the quality and consistency of plasma p-tau
immunoassays needing some improvement. A recent publication
comparing 10 assays for measuring p-tau181 and p-tau217 (30)
found that mass spectrometry-based measurements of p-tau217
consistently outperformed immunoassays of either p-tau217 or
p-tau181. Therefore, it is important that consistent platforms are
used across studies to be able to combine data from different
studies, which will lead to larger statistical power.

Our analysis of plasma tau did not find any genome-wide
significant results in common with Sarnowski et al. (16) analysis
of circulating total Tau, which included 14,721 samples. However,
there are still important similarities between the two worth con-
sidering. Firstly, even in our analyses it did not reach the genome-
wide significant, we were able to confirm the association with
the MAPT locus, which was the second genome-wide locus and
in analyses showed a P = 6.7 × 10−07. We additionally found that
rs4607127, one of the lead variants in their trans-ancestry GWAS,
replicated at nominal P-value (P = 0.012) in our dataset. The latter
finding is unexpected given that it was only significant in their
analysis of African Americans, but it highlights the importance of
not only conducting large GWASs, but also doing analyses across
ancestries, as they highlighted in their discussion. We also see
some slight overlap in our MAGMA gene-based results and their
analysis of GWAS catalog traits for the main genes identified
in their meta-analysis. Specifically, their GWAS meta-analysis
implicates IL15, which is associated with neurofibrillary tangles in
GWAS catalog results, as a candidate functional gene for circulat-
ing total tau levels. The same gene reached nominal significance
(P = 0.049) in our MAGMA gene-based analysis, supporting the
indication of IL15 may have a tau mediated functional role in AD.

We do find genome-wide significance level replication with
results from Damotte et al. (15), but only in the APOE region.
None of our analyses of Aβ levels finds significant results for
the rs650585 variant identified by Damotte et al. (15), nor for the
BACE1/RNF214 locus as a whole. Damotte’s group also did gene-
based analysis using their main GWAS results and found genome-
wide significant results for PSEN2, CCK, RNF214, BACE1 and APP in
association with Aβ40; APOE and APOC1 in association with Aβ42;
and ZNF397, APOE and APOC1 in association with Aβ42/40 ratio.
We did not have power to generate significant gene-based analysis
for Aβ40, but there was a strong signal in the APP locus in the
main GWAS (P = 5.88 × 10−06). Gene-based analyses for Aβ42, and
Aβ42/40 ratio successfully replicated signals for APOE and APOC1.
It should be noted that although our analysis is nearly nine times
smaller than the dataset used by Damotte et al. the analyses
performed here used the new generation of plasma assays for
these proteins. Although our dataset has both cases and controls,
which offers us more statistical power compared with their model
using only non-demented subjects, the sample size required to
generate results in their analysis and weak results in the APOE
locus suggests that much larger studies with these more sensitive
analyses are needed to make any definite determination on the
matter.

Finally, we attempted to improve the sensitivity and specificity
of our plasma biomarkers by including our most significant vari-
ant in our model. Our group has used similar methods previously
in an analysis of CSF YKL-40 levels (7) where we demonstrate
that when correcting YKL40 levels with the variants associated
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with YKL40 levels but not AD risk, the sensitivity and specificity
increases. In our current analysis, we did not see any improved
sensitivity and specificity for plasma p-tau181, tau or Aβ42 levels
when including out top hits in the model, likely because of the
low frequency of the identified variants, or because those variants
may have some residual effect on AD risk. On the other hand, we
show a significant and consistent increase in the sensitivity and
specificity power when NfL levels were corrected by the genome-
wide signals. This is an important finding, as it demonstrates that
we can improve the sensitivity and specificity of these biomarkers
by including variants associated with the plasma levels but not
the disease.

It is important to note that these results have some limitations.
Firstly, as has been indicated in other sections of the discussion,
our power to detect signals outside of the APOE region for both
common and rare variants is lacking. Future plasma biomarker
studies would require larger sample sizes or biomarker assays
with greater sensitivity, such as the p-tau217 assay MS assay that
is mentioned by Janelidze et al. (30). Following this point, some
significant loci and LOI identified in our main GWAS are very close
to, and in some cases below the target minor allele count of 10 for
our given sample size. As such, some very signals identified here
may be false positives. In addition to that, we do not have strong
results for determining if these variants are truly associated with
AD. More studies will need to be done to validate that these
variants influence both AD and biomarker levels.

In conclusion, this analysis demonstrates potential power in
using plasma biomarker levels as endophenotypes. Taking into
consideration the genetic overlap of plasma and CSF biomarker,
and the context of recent plasma biomarker studies, these find-
ings suggest that plasma biomarkers can identify variants asso-
ciated with AD risk and can do so with some level of consistency.
Plasma is a much easier, cheaper and less invasive biospecimen
to use for clinical assessment and genetic analyses and will be a
useful tool for further expanding upon our understanding of AD
biology and pathophysiology.

Materials and Methods
Data and demographics
Plasma Aβ40 (n = 1964), Aβ42 (n = 1985), Tau (n = 563), p-tau181
(n = 1186), and NFL (n = 2380) were measured for a total of 3010
individuals (in three different studies; ADNI (n = 1695), Knight-
ADRC (n = 1162), and the HCP (n = 157). Within ADNI, individuals
had an average age of 74, with the total population ranging from
55 to 91. Knight-ADRC participants were 69 years old on average,
ranging between 37 and 91. Finally, HCP participants were 74 years
old on average ranging between 51 and 90 years old, for a total
population average of 72 (37–91). Across the three datasets, there
subjects were, on average, 47.77% female, 43.32% APOE ε4 + and
43.32% controls. The full population demographics are summa-
rized in Table 1 and Supplementary Material, S1.

Knight-ADRC
Knight-ADRC samples were collected in the morning after an
overnight fast, immediately centrifuged and stored at −80◦C.
Measures of plasma Aβ40, Aβ42 and NfL were performed by
C2N diagnostics (17), which uses Mass spectrometry-based tests
to measure concentrations of protein in plasma. Plasma Aβ40,
Aβ42 and NFL levels were measured in 1121 (74.04% cases), 1121
(74.04% cases) and 803 (75.22% cases) Knight-ADRC individuals
respectively (n = 1162; Supplementary Material, Table S1).

CSF and blood samples were collected following overnight fast-
ing. Plasma Aβ42 and Aβ40 were measured in the C2N Diagnos-
tics commercial laboratory with an immunoprecipitation-mass
spectrometry assay (St. Louis, MO, USA). Plasma NfL was mea-
sured with Quanterix Nf-Light assay kits on a HD-X analyzer.
Concentrations of CSF Aβ40, Aβ42, total tau (tau) and tau phos-
phorylated at 181 (p-tau181) were measured by chemilumines-
cent enzyme immunoassay using a fully automated platform
(LUMIPULSE G1200, Fujirebio, Malvern, PA, USA). CSF NfL was
measured via commercial ELISA kit (UMAN Diagnostics, Umeå,
Sweden).

The human connectome project
Aβ40 and Aβ42 for human connectome subjects was measured
by C2N diagnostics by the same methods as previously described.
Plasma Aβ40 and Aβ42 were measured for 157 HCP individu-
als (Supplementary Material, Table S1). Case control status was
unknown for these individuals.

ADNI
Plasma Aβ40 and Aβ42 for ADNI subjects was measured using
Luminex immunoassay platform and was performed on 2454
plasma samples collected from 733 ADNI subjects. Alternatively,
measurement of plasma p-tau181 tau, and NfL were done using
the Single Molecule array (SiMoA) technique. After removing out-
lier and missing data from ADNI plasma Aβ40, Aβ42, Tau, p-
tau181 and NFL was measures, there were 683 (29.58% Cases), 704
(29.11% cases), 1577 (32.72% cases), 563 (32.86% cases) and 1186
(36.42% cases) individuals for each analyte, respectively (n = 1659;
Supplementary Material, Table S1).

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a pub-
lic–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, PET, other biological markers
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment and
early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org.

Plasma data harmonization
Because of the variation in measurement devices and methods
across datasets, measures of each analyte were normalized by
a z-scored, log10 transformation, as previously reported (23,31).
Outliers, defined as three standard deviations above or below the
mean, were removed. Data normality before and after normal-
ization is checked simply visually by histogram to see that the
data follow a normal distribution centered at 0. No significant
differences were found in biomarker levels across cohorts after
normalization (Supplementary Material, Fig. S1).

Genotyping QC
Genetic data were available for a total of 2692 unique individuals.
Genotyping data come from several different rounds of geno-
typing on Illumina platforms. Stringent quality thresholds were
applied to the genotype data for each platform separately. SNPs
were kept if they met the following criteria: (i) had a genotyping
rate ≥98%; (ii) had a MAF ≥0.3% and (iii) were in Hardy–Weinberg
equilibrium (HWE) (P > =1 × 10−6). After removing low quality
SNPs and individuals, genotype imputation was performed using
the Impute2 program with haplotypes derived from the 1000
Genomes Project (released June 2012). Genotype imputation was
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performed separately on the basis of the genotype platform used.
SNPs were removed if they failed any of the following criteria: (i)
an impute2 info-score quality of <0.3; (ii) a MAF < 2% or (iii) out of
HWE. After Imputation and QC, the different imputed plink files
were merged. A total of nearly 14 million (13 791 029) imputed and
directly genotyped SNPs and 2388 individuals were used for final
analyses.

To determine relatedness, Z0 and Z1 from IBD analysis for all
individuals are plotted (Supplementary Material, Fig. S2). Individ-
uals which fall outside of the selected range (Z0 ≥ 0.65, Z1 ≤ 0.4)
are considered relatives or duplicates. A single individual from
each relative/duplicate pair with lowest call rate was removed.
Finally, this analysis only uses data from subjects of a European
genetic background. Genetic background for all individuals is
determined by plotting the first two principal component anal-
yses and identifying the European cluster. Individuals whose first
two principal components fall within the selected range (Sup-
plementary Material, Fig. S3) are carried forward in QC steps.
A summary of subjects removed at each QC step can be found
in Supplementary Material, Table S7. Only baseline measures
of each dataset are used for SVA. The final analysis dataset,
after QC steps consists of 2388 total individuals (54.20% cases;
Supplementary Material, Table S1).

Statistical analyses
SVA of normalized plasma analyte levels were performed using
PLINK v2.0. The following covariates were included in the analy-
sis; age, sex, PC1-PC10 and CohortArray—A categorical dummy
variable of the combined Cohort and Array for each subject—
with the largest group removed. It is suggested within the Plink2.0
documentation to address collinearity by having multiple cate-
gorical covariates. Variants are considered statistically significant
if they have an SVA unadjusted P-value ≤5 × 10−08. Some signals
which are nearly significant (P < 1 × 10−07) with strong LD trails
are also considered for post-GWAS analyses. After SVA, forest
plots were generated to look at the direction of effect of top
SNPs across each phenotype. Following this, significant hits were
further explored using regional association plots [generated by
locuszoom (32)] to interrogate genes underneath each analytes
top hit. Additional gene mapping and functional annotation was
done using FUnctional Mapping and Annotation (FUMA) software
(33). Candidate genes indicated from fine mapping were inter-
rogated for differential expression in AD cases versus controls
by looking up genes in Agora, a publicly available database of
genes and whether they are associated with AD. Agora and the
data within are made available by studies performed through
the Accelerating Medicines Partnership Program for Alzheimer’s
Disease (AMP-AD).

Post-GWAS
Much of the post-GWAS analysis and processing was done in R
with the following packages loaded; qqman (34), dplyr, pROC (35),
MASS (36), snpStats, data.table, ggplot2. Additional information
on how each was used will be described further in relevant
sections.

Functional annotation and Gene-based analyses were done
using FUMA. Because FUMA currently only works with hg19 based
results, our summary statistics were lifted over to hg19 from
hg38. The final tables were generated in R. Additional post-GWAS
analyses were done to investigate the relationship between the
results found in this study, the results of the latest AD risk GWAS
(1), and the previous GWASs using CSF endophenotypes from our
group.

Quantifying the overlap with AD risk and CSF
analytes Aβ, tau and p-tau181
Top SNPs from this study were cross-checked in AD risk (1) and
CSF GWAS (22) summary statistics to look for common associa-
tions. The reverse was also done. To evaluate the genetic overlap of
AD risk variants and plasma biomarkers, and CSF biomarker risk
variants and plasma biomarkers, PRS were calculated using AD
risk GWAS (1) and CSF biomarker GWAS (23) summary statistics
with and without variants in the APOE region as reported previ-
ously (37). Using the PRS as a response variable in linear regression
against plasma analytes with and without APOE allows us to
interpret how the combined effect of AD risk or CSF biomarker
SNPs contribute to our plasma phenotypes both with and without
APOE background.

Improving biomarkers performance by correcting
by genetic associations
Finally, we wanted to try improving the sensitivity and specificity
of our plasma AD biomarkers for case control status. To do this
we compare two models using receiver operating characteristic
(ROC) curve analysis; a model testing sensitivity and specificity
of normalized plasma biomarker levels (status ∼ normalized
protein level), and a model testing sensitivity and specificity of
normalized plasma biomarker levels after they are adjusted for
genetic effects [status ∼ residuals (normalized protein level ∼ SNP
dosage)]. SNP dosages were extracted from plink.bed files using
the read.plink function from the snpStats package. To correct
for genetic effect, we calculated Studentized residuals—using
the ‘studres’ function from the MASS package—from a linear
regression of plasma biomarker levels and each of the top hits for
each phenotype. As was done in the plink analysis, age, gender,
CohortArray and the first 10 PCs were used as covariates. We
summarize the results by reporting the change in AUC (�AUC)—
calculated by taking the difference in the uncorrected AUC (using
z-score) and the corrected AUC (using studentized residuals)—
and the P-value—calculated by the DeLong test to compare AUC.

Supplementary Material
Supplementary Material is available at HMG online.
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